研究業績

被引用回数(Citations)
研究費・競争的資金(Grants)
特許(Patents)
  1. 特許7560367 回転電機の絶縁劣化診断方法および絶縁劣化診断装置
招待講演(Invited talks)
  1. 古里友宏
    超臨界流体と水中におけるパルス放電由来の衝撃波の観測
    静電気学会東北・関西・九州支部合同研究会/第449 回生存圏シンポジウム (2022年3月17日)
  2. 古里友宏
    パルスアーク放電により生成した超臨界二酸化炭素中衝撃波の伝搬特性
    静電気学会東北・関西・九州支部合同研究会/第435 回生存圏シンポジウム (2020年9月7日)
  3. 古里友宏
    超臨界二酸化炭素中のナノ秒パルス放電の生成と観測
    超臨界流体部会 第18回サマースクール (2019年7月25日)
  4. Tomohiro Furusato
    Generation of pulsed arc discharge plasma in supercritical carbon dioxide
    8th international symposium on Molecular Thermodynamics and Molecular Simulation (2018年9月7日)
学術論文(Papers)
超臨界流体中プラズマ(Discharge plasmas in Supercritical fluids)
  1. Shock-wave propagation in supercritical CO2 induced by nanosecond-pulsed arc plasma
    J. Phys. D: Appl. Phys., Vol. 53, No. 40, 40LT01, 2020.
    T. Furusato, Y. Inada, M. Sasaki, Y. Matsuda, and T. Yamashita
  2. Anomalous Plasma Temperature at Supercritical Phase of Pressurized CO2 after Pulsed Breakdown Followed by Large Short-circuiting Current
    IEEE Trans. Dielectr. Electr. Insul., vol. 25, no. 5, pp. 1807-1813, 2018.
    T. Furusato, N. Ashizuka, T. Kamagahara, Y. Matsuda, T. Yamashita, M. Sasaki, T. Kiyan, and Y. Inada
  3. Effect of Voltage Rise Rate on Streamer Branching and Shock Wave Characteristics in Supercritical Carbon Dioxide
    IEEE Trans. Plasma Sci., Vol. 44, No. 12, pp. 3189-3165, 2016.
    T. Furusato, M. Ota, T. Fujishima, T. Yamashita, T. Sakugawa, S. Katsuki, and H. Akiyama
  4. Dielectric recovery mechanism of pressurized carbon dioxide at liquid and supercritical phases
    Jpn. J. Appl. Phys., Vol. 54, No. 9, 096102, 2015.
    H. Tanoue, T. Furusato, T. Imamichi, M. Ota, S. Katsuki, and H. Akiyama 
  5. Characteristics of Shock Waves Generated by a Negative Pulsed Discharge in Supercritical Carbon Dioxide
    IEEE Trans. Plasma Sci., Vol. 42, No. 10, pp. 3258-3263, 2014.
    H. Tanoue, T. Furusato, K. Takahashi, S. H. R. Hosseini, S. Katsuki and H. Akiyama
  6. Prebreakdown process of a negative nanosecond pulsed discharge in supercritical carbon dioxide
    Appl. Phys. Express, Vol. 7, 026201, 2014.
    T. Furusato, H. Tanoue, S. Katsuki, M. Hara, and H. Akiyama
  7. Initiation Mechanism of a Negative Nanosecond Pulsed Discharge in Supercritical Carbon Dioxide
    IEEE Trans. Plasma Sci., Vol. 40, No. 11, pp. 3105-3115,  2012.
    T. Furusato, T. Ihara, T. Kiyan, S. Katsuki, M. Hara and H. Akiyama
  8. Fractal Analysis of Positive Pulsed Streamer Patterns in Supercritical Carbon Dioxide
    IEEE Trans. Plasma Sci., Vol. 40, No. 10, pp. 2415-2430,  2012.
    T. Furusato, T. Ihara, S. Kameda, T. Kiyan, S. Katsuki, M. Hara and H. Akiyama
  9. Initiation mechanism of a positive streamer in pressurized carbon dioxide up to liquid and supercritical phases with nanosecond pulsed voltages
    J. Phys. D: Appl. Phys., Vol.45, 075204, 2012.  
    T. Ihara, T. Furusato, S. Kameda, T. Kiyan, S. Katsuki, M. Hara and H. Akiyama
  10. Positive Pulsed Streamer in Supercritical Carbon Dioxide
    IEEE Trans. Plasma Sci., Vol. 39, No. 11, pp. 2650-2651, 2011.
    T. Ihara, T. Kiyan, S. Katsuki, T. Furusato, M. Hara and H. Akiyama 
  11. Weibull Statistical Analysis of Pulsed Breakdown Voltages in High-Pressure Carbon Dioxide Including Supercritical Phase 
    IEEE Trans. Plasma Sci., Vol.39, No.8, pp. 1729-1735, 2011.  
    T. Kiyan, T. Ihara, S. Kameda, T. Furusato, M. Hara and H. Akiyama
水上放電プラズマ(Surface discharge plasma on water)
  1. Linear oligopeptide formation from alanine-diketopiperazine in acidic aqueous solutions using interfacial nano-pulsed discharge plasma
    New J. Chem., accepted for publication.
    Mitsuru Sasaki, Kouki Nonaka, Yuka Sakai, Tetsuo Honma, Tomohiro Furusato, Kunio Kawamura
  2. Nano-pulsed discharge-plasma-induced abiotic oligopeptide formation from diketopiperazine
    Sci. Nat., Vol. 109, No. 33, pp. 1-6, 2022.
    M. Sasaki, Y. Miyagawa, K. Nonaka, R. Miyanomae, A. Quitain, T. Kida, M. Goto, T. Honma, T. Furusato, K. Kawamura
  3. Underwater shock wave induced by pulsed discharge on water
    J. Phys. D: Appl. Phys., Vol. 55, No. 11, 115203, 2022.
    T. Furusato, M. Sasaki, Y. Matsuda, and T. Yamashita
  4. One-pot synthesis of thermoresponsive Poly(N-Isopropylacrylamide) assisted by pulsed arc discharge in contact with water interface for wound dressing purposes
    ACS Appl. Polym. Mater., vol. 4, no.1, pp. 74-83, 2022.
    C. S. C. Issasi, K. Mori, R. M. Ibarra, M. Sasaki, A. T. Quitain, T. Kida, S. Okubayashi, T. Furusato
  5. Validation of the local thermodynamic equilibrium at a local current concentration area of the positive pulsed surface discharge plasma on water
    Jpn. J. Appl. Phys., vol. 59, SHHA07, 2020.
    T. Furusato, K. Oura, Y. Matsuda, M. Sasaki, Y. Inada, and T. Yamashita
  6. Simulation of Voltage/Current Waveforms and Contact Area of Pulsed Surface Discharge on Water
    IEEE Trans. Dielectr. Electr. Insul., vol. 26, no. 2, pp. 439-446, 2019.
    T. Furusato, Y. Yamamoto, T. Sakamoto, K. Oura, Y. Matsuda, T. Yamashita
  7. A New Evaluation Method of Contact Area at Interface between Pulsed Surface Discharge and Water
    IEEE Trans. Plasma Sci., vol. 46, no. 6, pp. 2079-2084, 2018.
    T. Furusato, D. Obata, Y. Yamamoto, and T. Yamashita
  8. Streamer Branching and Spectroscopic Characteristics of Surface Discharge on Water under Different Pulsed Voltages
    IEEE Trans. Plasma Sci.,vol. 45, no. 4, pp. 711-717, 2017.
    T. Furusato, T. Sadamatsu, Y. Matsuda, and T. Yamashita
  9. 水上沿面放電の複雑性と放電状態の遷移の関係
    静電気学会論文誌(J. Inst. Electrostat. Jpn.), vol. 41, no. 1, pp. 8-13, 2017.
    古里友宏,貞松孝洋,松田良信,山下敬彦
マグネトロンスパッタリング(Magnetron sputtering )
  1. Reduction and uniformization of the resistivity of Ga-doped ZnO by combining short gap magnetron sputtering and buffer layer
    Jpn. J. Appl. Phys., vol. 58, SEED04, 2019.
    Y. Matsuda, N. Matsuo, K. Sakamoto, M. Shinohara, T. Furusato, and T. Yamashita
複合絶縁型スイッチギヤ(Solid/gas composite insulation system)
  1. Design of Solid/Gas Composite Insulation System with Embedded Electrode
    IEEE Trans. Dielectr. Electr. Insul., vol. 26, no. 1, pp. 56-63, 2019
    T. Yamashita, T. Furusato, N. Asari, and J. Sato
  2. Basic Study on Surface Insulation Design of Solid/Gas Composite Insulation System with Embedded Electrode
    IEEE Trans. Dielectr. Electr. Insul., vol. 24, no. 5, pp. 3055-3062, 2017.
    T. Yamashita, K. Iwanaga, T. Furusato, N. Asari, and J. Sato
  3. Estimation of Surface Breakdown Voltage of Solid/Gas Composite Insulation with Embedded Electrode
    IEEE Trans. Dielectr. Electr. Insul., Vol. 23, No. 5, pp. 3026-3033, 2016.
    T. Yamashita, K. Iwanaga, T. Furusato, H. Koreeda, T. Fujishima, N. Asari and J. Sato
  4. Improvement of Insulation Performance of Solid/Gas Composite Insulation with Embedded Electrode
    IEEE Trans. Dielectr. Electr. Insul., Vol. 23, No. 2, pp. 787-794, 2016.
    T. Yamashita, K. Iwanaga, T. Furusato, H. Koreeda, T. Fujishima, and J. Sato
がいしの汚損沿面放電(Dry-band discharge on wet polluted insulators)
  1. Critical Current for Phase Shift of Dry-Band Discharge on Wet Polluted Insulators
    J. Electrostatics, vol. 97, pp. 51-57, 2019.
    T. Yamashita, T. Furusato, R. Konishi, T. Kurokawa, and K. Yaji
  2. Influence of Series Resistance on Dry-Band Discharge Characteristics on Wet Polluted Insulators
    IEEE Trans. Dielectr. Electr. Insul., vol. 24, no. 5, pp. 3055-3062, 2017.
    T. Yamashita, K. Iwanaga, T. Furusato, N. Asari, and J. Sato